

Introduction - Last Team's Bridge: A Baseline

Figure 1: Bridge Overview

- Determined maximum load capacities of the existing bridge
- Used these capacities as a baseline for improvement for this year
- Maintained previous year's bridge shape
- Designed NEW connections to increase overall bridge capacity
 - Focused on industry standards for steel design and manufacturing
- Analyzed new connections
- Predicted new bridge weak points
- Fabricated new bridge design

End goals:

- Increase load capacity
- Create predicted vs. actual performance report

Existing Connections

- Designed to cut down assembly time
- These were analyzed and redesigned to improve the overall bridge capacity
- The redesigned connections focus on steel design principles

Figure 3: Existing Connections

Capacity Calculations for Existing Connections

- Controlling Capacities
 - Tensile Fracture-
 - Bolt Hole Tearout

 $A_e = Effective net area, in^2$

Table 1: Equations Used to Determine Connection Capacities

- Other Capacities Checked
 - Tensile Yielding
 - Bolt Hole Bearing Strength
 - Tensile Strength of Bolts
 - Shear Strength of Bolts

Initial Connection Capacities

 Calculated connection capacities for each model and respective bolt hole

Figure 5: Connection F Locations

Table 2: Existing Connection Capacities

Connection	Controlling Strength Capacity, kips	Description	
A1 (top hole)	8.96	Bolt hole tearout	
A2 (bottom hole)	8.96	Bolt hole tearout	
В	8.96	Bolt hole tearout	
C1 (top hole)	12.66	Bolt hole tearout	
C2 (middle hole)	8.44	Bolt hole tearout	
C3 (bottom hole)	8.96	Bolt hole tearout	
D	5.625	Tensile Fracture	
E1 (top hole)	10.02	Bolt hole tearout	
E2 (bottom hole)	8.96	Bolt hole tearout	
F	5.625	Tensile Fracture	

Six Different Load Cases Analyzed

Figure 6: Load Case Models

Internal Axial Forces from RISA

Table 3: Capacity Calculations Legend

RISA Modeling

- Load placed on bridge
- Internal axial forces returned from RISA
- Axial forces compared to connection capacities
- Demand ÷ Capacity shows the % each connection is loaded

Table 4: Capacity Calculations

RISA Label	Plan Set ID	Axial[lb]	Axial[kip]	Connection 1	Connection 2	Connection 1 Capacity, kips	Connection 2 Capacity, kips	Controlling Capacity	% Loaded
M56A	ВС	2588.774	-2.59	В	C1	8.96	12.66	8.96	-28.89%
M58	ВС	6453.102	-6.45	В	C1	8.96	12.66	8.96	-72.02%
M59A	ВС	3053.647	-3.05	В	C1	8.96	12.66	8.96	-34.08%
M60A	AB	3040.53	-3.04	A1	В	8.96	8.96	8.96	-33.93%
M62A	EF	-5072.81	5.07	E2	F	8.96	5.625	5.625	90.18%
M63A	EF	-5055.19	5.06	E2	F	8.96	5.625	5.625	89.87%
M64A	EF	-5598.41	5.60	E2	F	8.96	5.625	5.625	99.53%
M65A	EF	-5563.79	5.56	E2	F	8.96	5.625	5.625	98.91%
M66A	AC	-22.743	0.02	D	E2	5.625	8.96	5.625	0.40%
M67A	AA	929.108	-0.93	A2	A2	8.96	8.96	8.96	-10.37%
M35	AA	645.508	-0.65	A2	D	8.96	5.625	5.625	-11.48%
M33	AB	2120.753	-2.12	A1	В	8.96	8.96	8.96	-23.67%
M34	BC	2142.072	-2.14	В	C1	8.96	12.66	8.96	-23.91%

Legend Bottom 50% of Force Distribution Values Axial [lb] Column Color Scheme Median Values [negligible axial force] [+]: Compression (this column only) [-]: Tension (this column only) Top 50% of Force Distribution Values **Demand vs Capacity Column** Top 50% of Values [Farthest from Failure] Color Scheme Median Values [Not Predicted to Fail] Demonstrates % Loaded for each connection in terms of capacity Bottom 50% of Values [Closest to Failure] Top Chord Members Plan Set ID Color Scheme Bottom Chord Members Vertical Columns at Bridge Ends Web Members

Goal: Increase These Values

Overall Bridge Capacity - Initial Conditions

Table 5: Calculated Max Load Capacity for Each Load Scenario

Load Case	Bridge Load Capacity, lbs	Governing Connection
LC1	3200	F
LC2	3125	F
LC3	2875	F
LC4	3500	F
LC5	3250	F
LC6	3075	F

Figure 7: Connection F

Table 6: Connection F Capacity

New Connection Designs

Design Features Focused on Industry Steel Design Practices

- Increased amount of bolt holes
- Decreased bolt hole sizes
- Increased cross-sectional area and gusseting
- Increased clear distance between bolt holes and edges

Figure 13: SolidWorks Model for Detail A Connection

New Bridge - Kept Chords as Continuous Members

Figure 14: New Bridge Profile (Side) View

- Redistributes the major tensile forces exerted on the top and bottom chords of the bridge
- Instead, the bottom and top chords experience bending moment
- Load path changes capacity is less dependant on connection strength

Revision 1 Connections - SOLIDWORKS

- Dimensional compatibility checked
- Design feasibility checked
- Fully dimensioned plan sets created

Figure 16: SolidWorks Dimensioned Plan Set for Detail D Connection

Revision 2 Connection Design - For Ease of Manufacturing and Design Feasibility

- Three-Plate Interlocking Design
 - Cost of Manufacturing and Fabrication ↓
 - Cost of Materials ↓
 - Strength ↓ (for A and B only!)
 - Strength is decreased only in noncritical areas (angled truss web members)
 - Strength is still increased and maintained in critical areas (Connections C and D)

Welds placed at these areas on each side

Figure 17: Connection D - Revision 2 Assembly

Controlling Capacity of the New Connections

Figure 18: Block Shear Illustration

Block Shear: A "block" of the material shears off around the bolted area

$$\phi R_n = 0.60 F_u A_{nv} + U_{bs} F_u A_{nt}$$

 F_u = Material tensile strength, 60 ksi A_{nv} = Net area subject to shear, in² U_{bs} = Uniform tension stress factor A_{nt} = Net area subject to tension, in²

Calculated Capacities for the New Connections

Predictions for New Overall Bridge Capacity

- Based on capacities of new connections
- In all cases, the ultimate load capacity was increased Project Goal Met!

Load Case	Old Ultimate Load Capacity, lbs	New Ultimate Load Capacity, Ibs	Connected Member	Governing Connection	% Increase in Strength Over Existing Bridge
LC1	3200	3569	M61	A2	42.75%
LC2	3125	4021	M61	A2	60.82%
LC3	2875	3568	M67B	A2	42.71%
LC4	3500	3723	M67B	A2	48.94%
LC5	3250	3378	M67B	A2	35.13%
LC6	3075	3161	M67B	A2	26.46%

Table 7: Calculated Load Capacities for New Bridge

Performance Comparison - Load Case 2

Old Conditions:

 Deflection before yielding: 0.936 in

Figure 19: Load Case 2 - Old Design Performance

New Conditions:

Deflection before yielding: 1.193 in
27% Increase

Figure 20: Load Case 2 - New Design Performance

Materials

- Grade A500 Square tubing
- 11 Gauge ASTM 1011 Grade
 50 Sheet Steel
- Grade 8 Zinc Plated Half Threaded ¼" - 2" Bolts (Not Pictured)
- Grade 8 ¼" Nuts (Not Pictured)

Figure 21: Steel Materials Provided by Page Steel

Outsourced Fabrication - Plasma Cutting

- Connection plates
 - Completed by Mingus Welding
 - Cut on a plasma table
 - Center holes marked with plasma table for later drilling

Figure 22: Plasma Cut Plate Connections

Figure 23: Manufacturing Drawings for Connection D

In-House Fabrication

- Cutting, drilling, and deburring done in-house
- Welding done by guest Eddie Byron and EK

Figure 25: Emma K. Welding

Figure 24: Aadil F. Deburring

Figure 27: Tatianna S. Measuring

Figure 28: Eric B. Cutting

Assembling the Bridge

Currently 100% complete in fabrication

Figure 29: Final Assembled Bridge

Figure 30: Final Assembled Top Web Connection

Loading the Bridge!

April 22nd

Figure 32: Failure Location - Block Shear at A2

References

- [1] Steel Construction Manual, 15th ed. 2017.
- [2] M. C. H. Yam and J. J. R. Cheng, "Behavior and design of gusset plate connections in compression," *Journal of Constructional Steel Research*, vol. 58, no. 5-8, pp. 1143–1159, Jan. 2002.

Thank You For Listening!

Any Questions?

